(1)LC串接法
原理如图1所示
这种方式采用电感与电容的串联接法,调节
电抗以达到
补偿
无功损耗的目的。从原理上
分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组
电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装臵了。但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被
广泛采用或使用者很少。
(2)采用电力半导体器件作为电容器组的投切
开关,较常采用的
接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接
电网省去一组开关,有很多优越性。
作为补偿装臵所采用的半导体器件一般都采用
晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。
动态补偿的补偿效果还要看
控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。
当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电
电阻尽快放电,以备电容器再次投入。 元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态
接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。
3.混合投切方式
实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,
但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装臵选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。
4. 在
无功功率补偿装臵的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所
了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。对于负荷相对平稳的线路应采用
静态补偿方式,也可使用动态补偿装臵。对于一些特殊的
工作环境就要慎重选择补偿方式,尤其线路中含有瞬变高电压、大电流冲击的场合是不能采用动态补偿的。一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装臵能完成这个过程。如果线路中没有出现这么一段相对的稳态过程并能量又有较大的变化,
我们把它称为瞬变或闪变,采用动态补偿就要出问题并可能引发事故。